NSTD Introductory Course

New Gen III+ Reactor Power Plant Designs

Economic Simplified Boiling Water Reactor (ESBWR)

Disclaimer

Information contained herein is derived exclusively from publicly available documents. The content of this introductory course does not necessarily represent what may be submitted to the Nuclear Regulatory Commission in the form of a license application for a new reactor. ORNL neither endorses this design nor has performed any design reviews to validate design improvements, design margins, or accident probabilities. The intent in compiling this information at this time is for the express purpose of constructing an internal, introductory course for our own staff.

Key Design Features

Nuclear Power Plant (NPP) Development

Gen II

Large Commercial NPPs Currently in Operation Throughout U.S.

Gen III

Advanced LWRs

AP 600(W) ABWR (GE) System 80+ (CE)

March 2006

Nuclear Power Plant (NPP) Development (cont.)

Transition

Probably Could Be Classed as Gen III+

SBWR

Gen III+

Evolutionary Designs Improved Economics Advanced Safety Features Some Passive Design Aspects Advanced Containment Design Simplified System Designs ESBWR (GE) AP 1000 (W) ACR 700 (AECL) EPR (AREVA - Framatome ANP) PBMR (South Africa, PBMR Pty. Ltd.)

BWR Evolution

BWR Design Progression

BWR 2-6 → ABWR → SBWR → ESBWR

- 35 Domestic (U.S.) operating BWRs
- 17 International operating BWRs
- 2 International (Japan) operating ABWRs
- Provide the current status of its design certification process with the NRC.

BWR Product Line 2/3/4

- Motor Generator Used for Recirculation System Flow Control
- High Pressure Coolant Injection (except early BWR 2s Nine Mile Point 1 and Oyster Creek which used Feedwater Coolant Injection)

BWR Product Line 5/6

- Flow Control Valves for Recirculation System Control
- High Pressure Core Spray

Recirculation Systems

- 5 Loops Nine Mile Point 1 and Oyster Creek
- 2 Loops all others

March 2006

ESBWR Overview

BWR Design Progression (cont.)

Isolation Condenser Systems

- Dresden 2 & 3
- Nine Mile Point 1
- Oyster Creek

Natural Circulation

Humboldt Bay

Containment

– Mark 1 (23)

- Mark II (8)
- Mark III (4)

BWR 2,3 and older BWR 4s inverted light bulb drywell and torus usually an inerted atmosphere

Newer BWR 4s and BWR 5s frustum of cone called "over-under"

BWR 6s pressure suppression

Predecisional – Information compiled from public sources – Internal ORNL use only **ESBWR** Overview

March 2006

ABWR NPPs

Kashiwazaki Units 6 & 7	Located in Japan	
Expected time to fuel load .		
Actual construction time		Unit 6 - 61 months
Actual construction time		Unit 6 - 61 months
Actual time to fuel load		Unit 6 - 36.5 months
		Unit 7 - 38.3 months
Broke ground September 17	7, 1991	
Commercial operation		t 6 - November 7, 1996
		Unit 7 - July 2, 1997

ABWR NPPs (cont.)

Lungmen Units 1 & 2 Located in Taiwan

Expected construction time	. 48 months
Delayed up to 2005 at 57% complete	
Reactor installedUnit 1 -	March 2005
Expected operationUnit 1	- July 2006
	- July 2007

Optimized Parameters for ESBWR

<u>Parameter</u>	<u>BWR/4-Mk I</u> (Browns Ferry 3)	<u>BWR/6-Mk III</u> (Grand Gulf) <u>ABWR</u>		<u>ESBWR</u>	
Power (MWt/GrossMWe)	3293/1098	3900/1360	3900/1360 3926/1350		
Vessel height/dia. (m)	21.9/6.4	21.8/6.4 21.1/7.1		27.7/7.1	
Fuel Bundles (number)	764	800 872		1132	
Active Fuel Height (m)	3.7	3.7 3.7		3.0	
Power density (kw/l)	50	54.2	51	54	
Recirculation pumps	2(large)	2(large) 10		zero	
Number of CRDs/type	185/LP	193/LP	205/FM	269/FM	
Safety system pumps	9	9	18	zero	
Safety diesel generator	2	3	3	zero	
Core damage freq./yr	1E-5	1E-6	1E-7	3E-8	
Safety Bldg Vol (m³/MWe)	115	150	160	~ 130	

What's different about ESBWR

ABWR	ESBWR
Recirculation System + support systems	Eliminated
HPCF System (2 each)	Eliminated need for ECCS pumps
LPFL (3 each)	Utilize passive and stored energy
Residual Heat Removal (3 each)	Non-safety, combined with cleanup system
Safety Grade Diesel Generators (3 each)	Eliminated – only 2 non-safety grade diesels
RCIC	Replaced with IC heat exchangers
SLC – 2 pumps	Replaced pumps with accumulators
Reactor Building Service Water (Safety Grade) And Plant Service Water (Safety Grade)	Made non-safety grade

Characteristic	Dry	Mark I	Mark II	Mark III	ABWR	SBWR	ESBWR
Pressure Suppression	No	Yes	Yes	Yes	Yes	Yes	Yes
Drywell and wetwell volume (ft ³ X 10 ⁶)	2.5	0.4	0.5	1.6	0.5	0.3	0.43
Design Pressure (psig)	50	62	45	15	45	55	40
LOCA Pressure (psig)	50	44	42	9	39	42	30

- 94 -

Plant Licensing Status

Design Certification

- Accepted for docketing by the NRC in December 2005.
- Final Design Approval (FDA) is expected in December 2009.
- Design Certification expected in December 2010.

Utility Activities

- The consortium, NuStart, is expected to apply for a construction/operating license (COL) for an ESBWR for Entergy Nuclear at its Grand Gulf Site in late 2007 or early 2008.
- Dominion will be ready to apply for a COL for an ESBWR at its North Anna Site in September 2007.
- Entergy Nuclear will apply for a COL for an ESBWR at its River Bend Site in the first half of 2008.

March 2006

Plant Overview

Safety Systems Inside Containment Envelope

Core and Vessel Design

imagination at work

ESBWR Fuel Assembly

- Same cross-sectional dimensions as ABWR
- Active Fuel Length: ABWR = 144 inches ESBWR = 120 inches

Important Systems

Control Rod Drive System (CRDS)

Isolation Condenser System (ICS)

ESBWR Isolation Condenser System - Schematic Diagram

Standby Liquid Control System (SLCS)

April 5, 2005

Reactor Water Cleanup (RWCU) / Shutdown Cooling (SDC) System

Reactor Water Cleanup (RWCU)

Safety Systems

Gravity-Driven Cooling System (GDCS)

ESBWR Gravity-Driven Cooling System - Schematic Diagram

Passive Containment Cooling System (PCCS)

LOOP A SHOWN

Passive Containment Cooling System

TYP LOOP B, C, D, E & F

Depressurization

MSIV, SRV and DPV Arrangement

Containment Design

ESBWR Containment System - Schematic Diagram

Additional Systems

Power Conversion System (PCS)

Instrumentation and Control (I&C)

Summary of ESBWR I&C Characteristics

- ESBWR's digital I&C design is based on the same digital I&C framework, design, and hardware/software platforms of ABWR. The ABWR digital I&C design has been in operation and in construction (with hardware/software in fabrication/testing). proven system and hardware/software designs.
- Automation implemented same as ABWR
- Minimized hardwired cables same as ABWR
- Digital Remote Shutdown System capable of full plant control and enhances EOP utilization
- Enhanced "diverse protection and actuation" capability in compliance to BTP HICB - 19
- Fixed in-core gamma thermometer AFIP to replace the TIP system
 - simplified operation and reduced personnel radiation dosage.
 - eliminated TIP containment penetrations
- The ESBWR I&C design will comply with updated or newly developed regulatory requirements such as BTP-14, BTP-19, as well as RG1.152.

Electrical Distribution

Standby On-site AC Power Supply

- Consists of two 15 MVA independent diesels coupled to 6.9 kV AC generators, the DG auxiliary systems, fuel storage and transfer systems and associated local instruments and controls.
- Each DG supplies non-safety AC power to it's associated PIP busses on loss of voltage for plant investment protection.
- On PIP bus undervoltage the DG starts, accelerates with in 1 minute.
- Major loads are tripped from the 6.9 kV PIP busses.
- DG will connect to the PIP busses when incoming preferred and alternate preferred source breakers have been tripped.
- Large motor loads are then reapplied sequentially and automatically after DG power source breaker closes.
- The DG is capable of being fully loaded within 600 seconds.
- DG operation is not required to ensure nuclear safety only investment protection

Accident Analysis

Probabilistic Risk Assessment (PRA)

3 GE Energy / Nuclear September 29, 2005

Breakdown By Initiating Event

Design Control Document (DCD) Accident Analyses

ESBWR Severe Accident Treatment – Work Structure

